An index for set-valued maps in infinite-dimensional spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Index for Set-valued Maps in Infinite- Dimensional Spaces

Previous fixed point indexes defined for a set-valued map in an infinite-dimensional space have required the values of this map to be convex sets. The corresponding assumption of this paper is that the values be (co-)acyclic sets, i.e., that the reduced Alexander cohomology group of each of these sets be trivial in each dimension. Other assumptions are that the space is locally convex and that ...

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

best proximity pair and coincidence point theorems for nonexpansive set-valued maps in hilbert spaces

this paper is concerned with the best proximity pair problem in hilbert spaces. given two subsets $a$ and $b$ of a hilbert space $h$ and the set-valued maps $f:a o 2^ b$ and $g:a_0 o 2^{a_0}$, where $a_0={xin a: |x-y|=d(a,b)~~~mbox{for some}~~~ yin b}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in a$ such that $$d(g(x_0),f(x_0))=d(a,b).$$

متن کامل

Structure of the Fixed Point of Condensing Set-Valued Maps

In this paper, we present structure of the fixed point set results for condensing set-valued map. Also, we prove a generalization of the Krasnosel'skii-Perov connectedness principle to the case of condensing set-valued maps.

متن کامل

Coupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces

 In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1972

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1972-0287535-2